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Abstract
An investigation of the combined effects due to the electronic interaction,
anisotropy and the magnetic field interaction for two-electron quantum dots
with harmonic confinement is performed. The electronic level structure and
the dynamics of the dot are studied with varying field strength and anisotropy.
The magnetization is derived for the complete deformation regime covering the
regime of weak to strong fields. The cases without and with inclusion of the spin
Zeeman interaction for a GaAs semiconductor are considered. The classical
dynamics of the interacting electrons is studied and exhibits near integrability
for field strengths leading to ratios ω1:ω2 = 1:n.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dots (QDs) allow one to confine electrons completely in a spatial region of several
nanometres. Their main advantage is the high degree of control of the underlying experimental
conditions such as the number of confined electrons and the shape of the artificial effective
confinement. A wealth of literature devoted to these systems has exhibited their low
dimensional atomic-like characteristics both theoretically [1] and experimentally [2]. Most of
the investigations so far have assumed a circularly symmetric harmonic confinement due to
the fact that the pronounced shell structure measured in the addition energy spectra of QDs
is a direct consequence of it [3]. One of the most powerful tools for studying the electronic
properties of few-electron quantum dots, in a ‘clean’ and accurate way, is the configuration
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interaction method which has been employed extensively [4–26]. Additionally, the few-
electron problem allows one to apply various other theoretical approaches such as perturbative
techniques [27–30], semiclassical analysis [31–33] and Padé approximation [34].

Imposing external magnetic fields leads to a variety of new and unexpected properties.
The ground state parity oscillations [35, 36] and the magic numbers in the angular
momentum [4, 7, 37–40] are beautiful manifestations of the response of the interelectronic
interaction to the magnetic field. Experimentally, the magnetic field has been a useful tool for
probing the electronic structure of QDs. Hence, the change of the parity in the ground state
was identified as a kink in the addition energy spectra [41–45] and the excitation spectrum of a
QD could be probed and compared with exact calculations [2, 46]. Moreover, the response of
the many-electron QD to magnetic fields has revealed further rich scenarios. For the low field
regime, the measurements were explained within the constant-interaction model taking into
account the exchange interaction between electrons with parallel spins [3], while for higher
field strengths the enhanced many-body correlations triggered different mechanisms for the
reconstruction of a stable electronic configuration, the so-called maximum density droplet,
such as formation of a hole in the centre of the QD or at the edge or a spin texture [47].

A spatial deformation, i.e., a lowering of the symmetry of the artificial confinement,
provides further insight as regards our understanding and control of the electronic properties
of QDs. Anisotropy lifts the degeneracies of the single-particle spectrum and eliminates the
magic numbers of the circular shell structure [48]. Furthermore, it might affect the total spin of a
state. For example, with increasing deformation, the ground state of four electrons undergoes a
transition from a spin triplet state (due to the Hund’s rule for circular symmetry) to a spin singlet
state. Other interesting effects arise from the possibility of tuning the degree of degeneracy
in the single-particle spectrum by changing the anisotropic harmonic configuration, thereby
predicting other sets of magic numbers for the shell closures. However, the reduced energetical
spacing between the shells renders it more complicated to observe experimentally [48–50].
Dynamically, the anisotropy serves as a rapid path to chaos in the interacting system and, by
varying it, it leads to an interplay of chaos and integrability [51, 52]. A variety of numerical
approaches have been applied to investigate the lowering of the symmetry in the electronic
properties of QDs. These include configuration interaction [51–57], Hartree [58], Hartree–
Fock [59] and spin density functional theory [48, 60–64]. The effect of the magnetic field in the
shell structure of asymmetric quantum dots has also been discussed both theoretically [65] and
experimentally [50, 66]. Three-dimensional cylindrical [31, 36, 67, 68], ellipsoidal [69–71]
and lens-shaped [72] QDs have also been studied.

In the present paper, a detailed investigation is performed that combines effects due to
the interelectronic interaction, anisotropy and an external magnetic field in two-electron QDs
with harmonic confinement by employing an ‘exact’ numerical diagonalization approach.
In section 2, we provide the Hamiltonian of the electronic motion and discuss its general
symmetries. In section 3, we introduce our basis set and present the computational approach.
Section 4 contains our results. In particular, the low lying spectrum in a magnetic field and
the magnetization are investigated for the full deformation regime from circularly symmetric
to wirelike dots. The results are discussed also in the presence of the Zeeman splitting term.
Moreover, the dynamics for a specific deformation is studied for changing magnetic field and
is linked to the single-particle picture. Finally, in section 5, we provide the conclusions.

2. Hamiltonian and general symmetries

The conduction band electrons confined in a two-dimensional anisotropic harmonic quantum
dot in a magnetic field B = (0, 0, B), within the framework of the effective mass
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approximation, are described by the Hamiltonian H = HCM + Hr with

HCM = 1

4me
(P + 2eA(R))2 + meω

2
0(cos2 φX2 + sin2 φY 2) (1)

Hr = 1

me

(
p +

e

2
A(r)

)2
+

me

4
ω2

0(cos2 φx2 + sin2 φy2) +
e2

4πεε0|r| . (2)

Due to the harmonic confinement, the centre of mass (CM) and internal motion separate. We
choose for the vector potential the symmetric gauge A(r) = 1

2 (B × r) and e, me, ε, ω0, φ are
the electron charge, effective mass, dielectric constant, characteristic frequency and anisotropy
parameter, respectively. Lower case and capital letters correspond to the relative and centre
of mass degrees of freedom, respectively. Quantization of HCM is straightforward and direct
observation of the electronic properties due to Hr via far infrared spectroscopy is prohibited,
since radiation in the dipole approximation contains only CM degrees of freedom and decouples
from Hr [4, 73, 74]. In the following we focus on the non-trivial relative motion Hr . Parity
(r → −r) and spin are interrelated symmetries due to the Pauli exclusion principle and we
encounter spin singlet eigenfunctions with even spatial symmetry �(r) = �(−r) and spin
triplet eigenfunctions with odd spatial symmetry �(r) = −�(−r).

To simplify our Hamiltonian we apply a canonical transformation, x = lx ′, y = ly ′,
px = p′

x/ l, py = p′
y/ l, thereby scaling Hr into a dimensionless form, via Hr = h̄2

mel2 H′
r . In

the following we adopt the typical values for a GaAs dot and the scaling yields the effective
Bohr radius l = a∗

B = 9.8 nm, the effective Hartree H a∗ = 11.8 meV and one effective unit
(1 e.u.) of field strength corresponds to 6.925 T. The artificial (electrostatic) confinement has
the characteristic frequency h̄ω0 = 4.96 meV. This scaling yields the following expression
for the dimensionless Hamiltonian of the relative motion (the primes have been dropped for
simplicity):

Hr = − ∂2

∂x2
− ∂2

∂y2
− i

B

2

(
x

∂

∂y
− y

∂

∂x

)
+

1

4

(
B2

4
+ ω2

x

)
x2 +

1

4

(
B2

4
+ ω2

y

)
y2 +

1√
x2 + y2

.

(3)

The two characteristic frequencies of the confinement are ωx = ω0 cos φ and ωy =
ω0 sin φ. For φ = 45◦ the dot has a circular shape. With increasing φ it deforms to an elliptic
shape and ends up as a wirelike dot for φ → 90◦ (ωx → 0, ωy → ω0).

The spin of the two electrons leads to an additional contribution to the energy, i.e., the
Zeeman term,

ES(B) = g∗µB BSz (4)

with µB being the Bohr magneton and g∗ = −0.44 the effective Landé factor for GaAs. ES

splits the threefold degeneracy of the spin triplet states while the spin singlet states remain
unchanged.

3. Computational approach

To investigate the two-electron QD we solve the corresponding Schrödinger equation using a
full configuration interaction (CI) approach with the anisotropic harmonic oscillator basis set

�nx ny = A(nx , ny)Hnx (
√

c1x)Hny(
√

c3 y) exp

(
−c1

2
x2 − c3

2
y2 + i

(
λ − c2

2

)
xy

)
(5)
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which leads to an algebraic eigenvalue problem. In equation (5) A(nx , ny) is the normalization
constant, c1 = M1ω1/c, c3 = M2ω2/c, c2 = 2µM1ω1 M2ω2/c, c = µ2 M1 M2ω1ω2 + 1,
µ = −2L/(meω0 p), λ = [meω0 L(2 + L2)]/[4(cos(2φ) − p)], M1,2 = me p/(p − cos(2φ) ∓
L2), ω1,2 = (ω0/

√
2)

√
1 + L2 ∓ p, L = eB/meω0 and p =

√
(1 + L2)2 − sin2(2φ). All

the units are scaled appropriately. The argument for the choice of these orbitals is the
following. The single-particle anisotropic harmonic oscillator in a magnetic field, described
by the Hamiltonian (3) without the Coulomb interaction term, can be transformed unitarily
such that we arrive at a Hamiltonian for two independent oscillators in their individual one-
dimensional harmonic potentials [75]:

H = p2
1

2M1
+

p2
2

2M2
+

1

2
M1ω

2
1x2 +

1

2
M2ω

2
2 y2 (6)

with eigenvalues En1,n2 = (n1 + 1
2 )h̄ω1 + (n2 + 1

2 )h̄ω2 and eigenfunctions of the form,

�n1n2 = Nn1,n2 exp

(
−c1

2
x2 − c3

2
y2 + i

(
λ − c2

2

)
xy

)

×
n1∑

k=0

n2∑
l=0

ckl(n1, n2)Hn1−k(α1x + β1 y)Hn2−l(α2x + β2 y). (7)

The exponential part in �n1n2 is exactly contained in our basis set (see equations (5) and (7)).
The analytical expressions for the coefficients ckl(n1, n2), α1, β1, α2, β2 in equation (7) can be
found in [75]. The Hermite polynomials Hn1−k(α1x +β1y) and Hn2−l(α2x +β2y) in equation (7)
can be equally described by the Hermite polynomials of our basis set in equation (5). The
corresponding relation is given by [76]

Hn1−k(α1x + β1 y) = 1√
2n1−k

n1−k∑
i=0

Hn1−k−i (
√

2α1x)Hi(
√

2β1 y).

Therefore, in order to describe exactly the eigenstate �n1n2 with our basis set, we need to
superimpose Hermite polynomials of equation (5) up to maximal order nx = ny = n1 + n2.

The next step is evaluating the Hamiltonian matrix belonging to equation (3). For this
purpose, we find firstly a Hamiltonian which can be diagonalized exactly and then subtract it
fromHr . To proceed, we write down the orbitals�nxny = �̃nx nyP , whereP = exp(i(λ− c2

2 )xy)

is the phase and �̃nx ny are the eigenfunctions of the dimensionless scaled Hamiltonian

H̃0 = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
+

1

2
c2

1x2 +
1

2
c2

3 y2

with eigenvalues ε̃nx ny = (nx + 1
2 )h̄c1 + (ny + 1

2 )h̄c3. To implement the phase we proceed as
follows:

H̃0�̃nx ny = ε̃nx ny �̃nx ny ⇒ PH̃0P−1P�̃nx ny = ε̃nx nyP�̃nx ny ⇒ H0�nx ny = ε̃nx ny �nx ny

where H0 = PH̃0P−1. For our QD we have to consider the Hamiltonian H1 = 2H0 with
eigenvalues ηnx ny = 2ε̃nx ny where

H1 = − ∂2

∂x2
− ∂2
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+ 2i

(
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)(
x

∂
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+ y

∂
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+

[(
λ − c2

2

)2

+ c2
1

]
x2 +

[(
λ − c2

2

)2

+ c2
3

]
y2.
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Figure 1. A schematic diagram of the energy of the ground and first seven excited states for B = 0
with increasing φ. The vertical line indicates the angle for which the system is integrable.

Therefore, the dimensionless Hamiltonian of the relative motion Hr can be written as

Hr = (Hr − H1) + H1 = −i

[
− B

2
+ 2

(
λ − c2

2

)]
y

∂

∂x
− i

[
B

2
+ 2

(
λ − c2

2

)]
x

∂

∂y

+

[
B2

16
+

ω2
x

4
−

(
λ − c2

2

)2

− c2
1

]
x2

+

[
B2

16
+

ω2
y

4
−

(
λ − c2

2

)2

− c2
3

]
y2 +

1√
x2 + y2

+ H1. (8)

The eigenvalues ηnx ny will be contained in the diagonal elements of the Hamiltonian matrix.
The matrix elements due to the contribution of the first four terms in equation (8) can be
calculated in a straightforward analytical form. The matrix elements due to the Coulomb
repulsion have to be evaluated numerically. For this purpose, we replace the Coulomb
interaction by an auxiliary Gaussian integral, the so-called Singer transform, resulting in
a three-dimensional integral. A combination of Gauss–Hermite exact expressions for the
integrals in x and y and a Gauss–Kronrod quadrature in the auxiliary integration allow an
efficient and in particular accurate evaluation of the electron–electron integral. A complete
analytical evaluation of the Coulomb integral is also possible but yields a fourfold series which
turns out to be numerically unstable. For further details on the treatment of the electron–
electron integrals we refer the reader to [51, 52].

4. Results and discussion

4.1. No magnetic field

The starting point of our analysis is the two-electron anisotropic quantum dot without a
magnetic field, which has been studied in detail in [51, 52]. Figure 1 presents the low lying
spectrum of Hr (B = 0) as a function of the anisotropy φ. For φ = 45◦ the dot is rotationally
symmetric and Lz is a constant of motion. The energy eigenstates follow (with increasing
energy) the symmetries: (m; S) = (0; 0), (±1; 1), (±2; 0), (0; 0), (±3; 1), (±1; 1), . . .,

where m and S are the magnetic quantum number and the total spin, respectively. The
introduction of the anisotropy splits the degeneracies and leads to spin singlet–triplet (ST)
crossings. At ωy :ωx = 2:1, Hr (B = 0) becomes integrable due to the constant of motion:

 = {Lz, px} +
ω2

x

2
yx2 − y√

x2 + y2
.
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(a) (b) (c)

Figure 2. Domains of spin multiplicity in the (B, φ) plane for (a) the ground state, (b) the second
excited state and (c) the fourth excited state. The brightness indicates the energy differences �E0,
�E2 and �E4, on a logarithmic scale. Dark and bright regions correspond to large and small
spacings, respectively. The bright curves form the borders between the different ST symmetry
domains.

Both the x-parity and the y-parity are symmetries of Hr (B = 0) for any φ.  commutes with
the x-parity but not with the y-parity operator leading to pairwise degeneracies of ST states
with identical x-parity. For φ → 90◦ the eigenstates converge to energetically well-separated
pairs of spin singlet and spin triplet states.

4.2. The spectrum and magnetization for g∗ = 0 in a magnetic field

Before investigating the general situation of our interacting anisotropic QD in a magnetic field
let us briefly address the effect of the magnetic field in the interacting isotropic case, which
possesses particular analytical solutions [67, 77]. Lz is a constant of motion and the system
is integrable. As stated in the introduction, increasing the magnetic field leads to a ground
state for the system that changes its spin symmetry, i.e., the well-known ground state ST
oscillations [35]. The symmetries of the ground state with increasing magnetic field are as
follows: (m; S) = (0; 0), (−1; 1), (−2; 0), (−3; 1), . . .. With increasing field strength, the
energy spacing between two neighbouring levels �Ei = Ei+1 − Ei (i determines the degree
of excitation and takes even values i = 0, 2, 4 within our study) oscillates between zero (at the
ST crossing of the states with energies Ei and Ei+1) and a maximum amplitude �Emax. For
stronger external fields �Emax reduces and the energy curves of the ground and first excited
state have a slope that approaches the same constant value. A quantity for measuring this event
is the magnetization, which, at zero temperature, is defined as M(B) = −( ∂ E0

∂ B ), where E0 is the
energy of the ground state. Hence, the ST crossings will appear as steps in the magnetization
curve whose size decreases for strong magnetic fields (see figure 3 for φ = 45◦).

Introduction of the anisotropy breaks the rotational symmetry and a large number of
avoided crossings between the energy curves of states with identical symmetry occurs. For
B = 0 the level spacing �E0 will decrease with increasing deformation (see figure 1).
Figure 2(a) shows the spin multiplicity S = 0, 1 of the ground state in the (B, φ) plane.
For φ = 45◦ we observe the ST ground state oscillations, discussed in the previous paragraph.
With increasing deformation we observe a robustness of the border curve B(φ) corresponding
to the first ST crossing, i.e., it is approximately independent of φ. For higher magnetic
fields the domains corresponding to different spin multiplicity widen smoothly with increasing
deformation and the corresponding curves B(φ) show a significant positive slope dB

dφ
. As a
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Figure 3. The magnetization M(B) for g∗ = 0. The various panels correspond to anisotropies
covering the full deformation regime.

result the fifth S = 0 domain is suppressed for φ � 54◦ in the range of the calculated magnetic
field strengths.

Figure 2(b) shows the spin multiplicity domains for the second excited state (E2) in the
(B, φ) plane. For B = 0 this state is a spin triplet state and at ωy :ωx = 2:1 it becomes
degenerate with the spin singlet state corresponding to the energy E3 (see figure 1 and the
discussion in section 4.1 for further details). For larger φ the state with energy E2 is a spin
singlet. The border curve corresponding to the first ST crossover for relatively weak magnetic
fields stops at ωy :ωx = 2:1 at B = 0. The following border curves for stronger fields show
a negative slope and the different symmetry domains slightly widen for stronger anisotropies
ωy :ωx > 2:1.

The fourth excited state (E4) shows an even stronger dependence of its spin multiplicity
islands on B and φ. Figure 2(c) shows the spin symmetry domains for the fourth excited
state. Initially it is a spin singlet and after ωy :ωx = 2:1 it becomes a spin triplet due to a
ST crossing as expected. For stronger anisotropies and due to the higher number of excited
states involved in the spectrum, at φ ≈ 75◦ an ‘accidental’ crossing occurs and the fourth
excited state restores its initial parity. With increasing magnetic fields the first boundary curve
is suppressed at ωy :ωx = 2:1 and the second one at φ ≈ 75◦ as a result of the above discussed
behaviour. For stronger field, the corresponding spin multiplicity domains and border curves
show an even stronger dependence on φ than the one observed for the second excited state.

A complementary quantity for studying the separate implications of the magnetic field and
deformation on the ground state is the magnetization M . It has been shown that for three and
four electrons M depends on both the anisotropy and the number of electrons [58]. Figure 3
shows the magnetization for various anisotropies corresponding to the full deformation regime.
For φ = 45◦ the steps are more pronounced than for any anisotropy. With increasing φ the
overall behaviour of �E0(B) leads to a decrease of the steps in the magnetization signal,
despite the fact that the ST oscillations are present according to figure 2(a). Hence, at φ � 54◦
the fourth step is eliminated as predicted by figure 2(a) but also the third step is no longer
visible on the scale of figure 3 for φ � 54◦, the second step disappears for φ � 70◦ and the
first one disappears for φ � 81◦ resulting in a completely smooth behaviour for φ = 85◦.
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(a) (b) (c)

=

Figure 4. Domains of spin multiplicity in the (B, φ) plane for (a) the ground state, (b) the second
excited state and (c) the fourth excited state in the presence of spin Zeeman splitting. Brightness
indicates the energy differences �E0, �E2 and �E4, on a logarithmic scale. Dark and bright
regions correspond to large and small spacings, respectively. The bright curves form the borders
between the different ST symmetry domains.

4.3. The spectrum and magnetization for g∗ = −0.44

So far, in our discussion, we have neglected the contribution of the Zeeman term (given by
equation (4)) in the calculation of the spectrum. The Zeeman term ES splits the threefold
degeneracy of the spin triplet states while it leaves unchanged the spin singlet states. This
additional splitting in the energy of the spin triplet states reduces the amplitude �Emax in the
oscillations of the level spacing �E0 and suppresses the ST oscillations in favour of the spin
triplet symmetry. Figure 4(a) shows the spin multiplicity of the ground state in the presence of
the Zeeman term. For φ = 45◦, despite the fact that the first ST oscillation survives, preserving
the first S = 0 domain, the second spin singlet domain is clearly reduced in comparison with
figure 2(a) whereas the third S = 0 domain in figure 2(a) vanishes completely. The introduction
of a deformation results in an elimination of the second spin singlet island for angles φ � 48◦.
The first S = 0 domain is preserved up to φ ≈ 65◦ while for stronger anisotropies ES dominates
due the reduced level spacing �E0(B = 0) and the S = 0 domain smoothly decreases in size
with further increasing deformation φ.

Figures 4(b) and (c) show the ST oscillations for the second (E2) and fourth (E4) excited
state in the (B, φ) plane respectively. It is clear that for lower fields, where ES is negligible due
to the small effective Landé factor for GaAs, the ST oscillations as described in figures 2(b)
and (c) persist with varying φ. For stronger external field (note that figures 4(b) and (c)
cover only the weak to intermediate field regime B � 0.9 whereas figures 2 cover the range
B � 2.0) the picture is rather complicated due to the competition of the existing energy scales
belonging to ES and the level spacing as well as the large number of excited states involved
in the formation of the spectrum. For a better illustration of our results, we present the low
lying spectrum for two anisotropies corresponding to the intermediate (ωy :ωx = 2:1) and the
wirelike (φ = 81◦) regime in figure 5. In both pictures we can observe the suppression of the
spin singlet states in the ground state as reproduced in figure 4(a) (note that all spin multiplet
components are shown in figure 5). For higher excited states, in the intermediate anisotropic
regime we observe avoided crossings and the ST oscillations are preserved for the low field
regime while in the wirelike case the pairing of the states leads to a rapid suppression of the
spin singlet states in this extreme limit.

In order to complete our analysis for g∗ = −0.44 we study the behaviour of the
magnetization. Figure 6 presents the magnetization for various anisotropies. For φ = 45◦ we
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Figure 5. The low lying spectrum for (a) ωy :ωx = 2:1 and (b) φ = 81◦. Full curves correspond to
spin singlet symmetry while the broken ones correspond to spin triplet symmetry with Sz = ±1, 0.
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Figure 6. The magnetization M(B) for g∗ = −0.44. The various panels correspond to anisotropies
covering the full deformation regime.

observe the first step remaining almost intact in the presence of ES reflecting the robustness of
the first S = 0 domain for the ground state energy. The next two steps are reduced in height
and their location in terms of field strengths is changed significantly compared to g∗ = 0, as
expected from the discussion of figure 4(a). For φ � 48◦ the second and third steps turn into a
hill, due to the suppression of the spin singlet island,which gradually disappears with increasing
anisotropy. The first step preserves its position up to φ ≈ 65◦ while for stronger deformations
it shifts towards lower field strengths due to the competition of ES and �E0(B = 0) in the
wirelike regime. For φ = 85◦ the magnetization shows a completely smooth diamagnetic
behaviour.

4.4. Dynamics

Before we investigate the dynamics of our interacting dot let us address some features of the
single-particle system, i.e. the Hamiltonian (6) which describes the (diagonalized) anisotropic
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Figure 7. (a) The single-particle spectrum; full curves correspond to spin singlet states and broken
curves to spin triplet states, (b) the fraction f of regular phase space as a function of the magnetic
field for the interacting dot and ((c)–(e)) Poincaré surfaces of the section (x, px for y = 0 and
E = 55 meV) for various magnetic fields (ωy :ωx = 2:1, h̄ω0 = 4.96 meV for all subfigures).

charged oscillator in a magnetic field. Its eigenvalues are En1,n2 = (n1 + 1
2 )h̄ω1 + (n2 + 1

2 )h̄ω2.
Figure 7(a) illustrates the single-particle spectrum at the anisotropic harmonic configuration
ωy :ωx = 2:1 with varying field strength. For B = 0 we observe the energy gaps due to the
[ N0

2 + 1]-fold degeneracy (the brackets [ ] indicate the integer part of the enclosed number) of
the energy levels where N0 = n1 +2n2 = 0, 1, 2, . . .. For finite field strengths the degeneracies
are lifted. For rational frequency ratios ω1:ω2 = 1:n, where n � 3 is integer, the energy levels
become [ N1

n + 1]-fold degenerate where N1 = n1 + nn2 = 0, 1, 2, . . .. Hence, by varying the
magnetic field we can tune the degeneracies of the single-particle spectrum as has been already
noted in [78]. The values of the field strengths for which we encounter ω1:ω2 = 1:n are given
by the expression

B = ω0

√
sin 2φ

(
n2 + 1

2n

)
− 1.

Table 1 contains the values of the field strength corresponding to n = 3–10. With increasing
n the level spacing between two neighbouring degenerate manifolds reduces. In the high field
limit the energy levels corresponding to states with n2 = 0 cluster to form the lowest Landau
level, the energies corresponding to n2 = 1 the first excited Landau level etc (see figure 7(a)
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Table 1. Field strengths corresponding to the frequency ratios ω1:ω2 = 1:n (h̄ω0 = 4.96 meV,
ωy :ωx = 2:1).

n Magnetic field (e.u.)

3 0.242 487
4 0.351 397
5 0.436 477
6 0.508 645
7 0.572 364
8 0.63
9 0.682 993

10 0.732 295

for large B values). Another property of the single-particle degenerate manifolds is that those
corresponding to odd n consist exclusively either of spin singlet or of spin triplet states whereas
those corresponding to even n consist of both spin singlet and triplet states.

Let us now discuss the dynamics of the interacting system following the same path as before
when studying the single-particle spectrum, i.e., starting with ωy :ωx = 2:1 and increasing B .
The parameter characterizing the dynamics is the fraction of regular phase space defined as
f = (number of regular trajectories)/(total number of trajectories). The criterion for whether a
trajectory is regular or chaotic is, of course, the finiteness of the Lyapunov exponent. Figure 7(b)
shows f as a function of the magnetic field. For B = 0 the system, as discussed in section 4.1,
is integrable and therefore f = 1. Introduction of the external field serves as a rapid path to
chaos. Figure 7(c) shows a Poincaré surface of the section (PSOS) for B = 0.05. It can be seen
that even for such a weak field, the regularity is dramatically suppressed and the phase space is
dominated by chaos. Further increasing the field strength we are led to an impressive peak for
f at B = 0.242 487. This field strength corresponds to the frequency ratio ω1:ω2 = 1:3. The
next major peak of f (B) in figure 7(b) occurs at ω1:ω2 = 1:4 and consequently at ω1:ω2 = 1:n
for n � 5. We observe that the peaks of f (B) corresponding to odd n are in general more
pronounced than those corresponding to even n. However, the two cases lead to a similar
level clustering for the quantized system. Although we cannot provide a thorough explanation
for this, we remark that the states for a given cluster of levels corresponding to a frequency
ratio with odd n possess the same parity (i.e., either spin singlet or spin triplet), while the
states of a given cluster of levels corresponding to even n involve both parities (i.e., spin
singlet and spin triplet). From this behaviour of f we conclude that interaction effects of the
QD usually destroy the regularity of classical phase space, but at rational frequency ratios
ω1:ω2 = 1:n regularity still plays an important role and dominates the phase space (see also
figure 7(d) for ω1:ω2 = 1:3). Of course, this behaviour is only well pronounced for not too
large values of n and the overall tendency of f with increasing field strength is to increase,
finally leading to a dominant regular phase space for a very strong field (see figures 7(b) and (e)
for B = 2.0). In this limit the magnetic interaction dominates and the anisotropic confinement
due to the geometry of the dot is of perturbative character, i.e., we encounter an approximate
rotational symmetry and we are close to integrability. For B = 0 and changing φ the property
of dominant regular classical phase space at ratios ωx :ωy = 1:n is reflected in the quantum
behaviour of the dot as follows. The energy level degeneracies at the ratios ωx :ωy = 1:n for
the non-interacting system are rather robust with respect to interaction effects in the sense that
energy level clustering occurs at these ratios (for not too large n) if the interaction between the
electrons is included [51, 52]. For finite magnetic field strengths the above-observed enhanced
fraction of regularity in classical phase space for the ratios ω1:ω2 = 1:n of the interacting
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system is reflected also in the quantum spectrum, i.e., we encounter level clustering for higher
excited states.

5. Conclusions

To conclude, we performed a detailed investigation of the effects of electronic interaction,
anisotropy and magnetic field interaction in the electronic structure and dynamical properties
of two-electron QDs with harmonic confinement. We have calculated the low lying energy
spectrum of the two-electron QD in a magnetic field for the full deformation regime from
circular to wirelike dots. The calculation reveals the ground state ST oscillations for φ = 45◦
and their weak dependence on the anisotropy. Despite this robustness of the ground state ST
oscillations the magnetization is much more sensitive to the anisotropy in the sense that it
smooths, i.e., it gradually looses its step-like structure, with increasing φ. Furthermore, we
study the excited states and reveal their ST oscillations which depend not only on the magnetic
field but also significantly on the anisotropy. If we include the Zeeman splitting ES contribution
to the energy, the picture for the ground state ST oscillations changes as the spin singlet states
are suppressed in favour of the spin triplet ones. The competition of the energy scales of
ES and �E0 destroy already for φ � 48◦ the second spin singlet island, yielding a bump in
the magnetization, whereas the first spin singlet domain is eliminated with increasing φ. For
higher excited states and intermediate field strengths the ST oscillations persist as shown for
example for the second and fourth excited states. Finally, we have investigated the dynamics
of the interacting system for the specific deformation ωy :ωx = 2:1. Despite the interaction, we
find a phase space that is dominated by regularity for rational ratios ω1:ω2 = 1:n. For stronger
field strengths the Hamiltonian acquires an approximate rotational symmetry and approaches
integrability.
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